張佩靖 Amy Pei-Ching Chang

微生物及免疫學研究所教授
專長:Epigenetic regulation and cancer
Phone:67111,65617
Email: pcchang@nycu.edu.tw

Education/學歷

  • 國立陽明大學藥理學研究所 碩士
  • 國立陽明大學生化暨分子生物研究所 博士
  • University of Kentucky: Postdoctoral fellow
  • UC Davis, Cancer Center: Postdoctoral fellow

Position/經歷

  • 2021~2023 
    特聘教授, 國立陽明交通大學   微生物及免疫學研究所
    Visiting Scholar, Lerner Research Institute, Cleveland Clinic
  • 2020 – Present   
    教授, 國立陽明大學 微生物及免疫學研究所
  • 2016 – 2020      
    副教授, 國立陽明大學   微生物及免疫學研究所
  • 2016 – 2019     
    副研究員, 高雄醫學大學   傳染病與癌症研究中心
  • 2015 – 2016   
    Visiting Scholar, School of Pharmacy   University of South California (USC)
  • 2011 – 2016   
    助理教授, 國立陽明大學   微生物及免疫學研究所

Research

  1. Virus-Host interaction: Epigenetic regulation and Cancer

Epigenetic regulation includes: (1) DNA methylation; (2) Histone methylation and (3) Long non-coding RNAs (LncRNAs). By using oncogenic herpesvirus KSHV as a model, we studied the tumorigenic role of KDM4A/JMJD2A, the first identified histone trimethyl demethylase, and its own modification in epigenetic regulation. We found that KDM4A is important for maintain low levels of H3K9me3, a favorable chromatin environment to execute rapid transcriptional reprograming. KDM4A was targeted and sumoylated by KSHV K-bZIP, a viral SUMO E3 ligase. Sumoylation is essential for chromatin binding and in vivo dementylation function of KDM4A. Our study also showed the role of KDM4A in regulating IFN response and how virus against human immune system through targeting KDM4A. Recently, we to identified a novel KSHV reactivation associated long non-coding RNAs (lncRNAs), a newly emerged epigenetic regulator, and elucidate its role in facilitating the relocalization of KDM4A from the transcription start site (TSS) of the promoter region towards the upstream region. In this case, KDM4A acts as an insulator, protecting the promoter region from invasion of heterochromatin-associated histone mark H3K9me3 and enhancing gene transactivation of genes during KSHV reactivation.

Using single-cell RNA sequencing (scRNA-seq) combined with bulk RNA-seq, we discovered the importance of KDM4A SUMOylation for the survival, movement, and angiogenesis of lytic KSHV-infected cells. Furthermore, SUMOylation of KDM4A is also critical for virus gene expression and virion production. This finding is significant because inhibiting cell movement and eradicating KSHV-infected cells without increasing viral load is a key strategy for treating virus-induced cancer. Our findings highlights the epigenetic regulatory role of KDM4A and suggests that targeting KDM4A SUMO modification could be a promising combination for oncolytic virotherapy.

2. Virus-Host interaction: HBV contributes to HCC resistance to immunotherapy

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in Taiwan. Notably, chronic hepatitis B virus (HBV) infection serves as a critical risk factor for the development of HCC. Antiviral therapy can reduce the incidence of chronic HBV infection-related HCC, but complete elimination of the disease remains a challenge. Thus, finding effective strategies to reduce the recurrence and mortality of chronic HBV-related HCC remains a crucial concern. We applied scRNA-seq to five HBV-related HCC specimens and identifed HBV (+) and HBV(-) HCC cells. Inferred large-scale copy number variations (CNVs) analysis identified a relatively benign population that helps us to define the initial state of the trajectory. Moreover, we observed that HCC tissue samples obtained from an occult HBV patient with positive anti-HBc exhibited a substantial abundance of macrophages, while HCC tissues from HBV(+) patients showed significant enrichment of T cells, suggesting a differential communication between HBV(+) and HBV(-) cells with immune cells. Thus, we performed cell-cell interactome analysis. We revealed distinct interactions between HBV(+) cells and HBV(-) cells. This discovery warrants additional investigation to elucidate the mechanisms by which HBV influences immune cell regulation in the tumor microenvironment.

3. Epigenetic regulation of lineage plasticity on prostate cancer progression

I further extend our epigenetic study to prostate cancer (PCa) research. PCa is a leading cancer affecting male population. To gain deeper insights into the underlying mechanisms of neuroendocrine transdifferentiation, several neuroendocrine-inducing factors have been identified, such as ADT, hypoxia, and IL-6. One notable finding of my research is the identification of neuron-restrictive silencer factor (NRSF), currently known as RE-1 silencing transcription factor (REST), as a master epigenetic regulator that represses neuroendocrine differentiation (NED) of PCa. To uncover NED-related factors inhibited by REST, I performed bulk RNA-seq and ChIP-seq analyses, which revealed the inhibition of several autophagy-related genes by REST. Consistently, activation of autophagy is essential for NED of PCa upon downregulation of REST. In addition to coding genes, I also discovered several REST-repressed lncRNAs that function as NED drivers. Notably, I found HOX antisense intergenic RNA (HOTAIR), a lncRNA that is overexpressed in a variety of tumors, as a REST-repressed lncRNA that is upregulated in NEPC. Further investigations revealed that HOTAIR plays a critical role as a driver for NED in PCa cells. Gene Ontology (GO) analysis of differentially expressed genes under HOTAIR overexpression provided additional support for the involvement of HOTAIR in NEPC progression. These findings highlight the significant contributions of both coding and non-coding RNA molecules in mediating the progression of PCa into the NEPC stage.

4. Cancer Immunology: tumor microenvironment in cancer progression.

Head and Neck Cancer: Emerging evidence showed that microenvironment shaped by pro- and anti-inflammatory types of macrophages contribute to not only host defense, but also cancer progression. We found that cancer stem cells (CSCs), without affect macrophage phenotype, induce M1 macrophages producing NED-related cytokines. Integrating transcriptome profiling in combine with mass spectrometry metabolites analysis reveals the contribution of glycolysis pathway in NED-related cytokines production. Importantly, CSC-educated M1 macrophages induced NED of cancer cells, thereby shifting carcinoma reprograming toward a neuroendocrine (NE) fate. In tumor tissues, NE marker CgA expression is associated with M1, but not M2, marker. These findings offer therapeutic opportunities of using immunotherapy to prevent the induction of a more malignant cancer phenotype.

Neuroendocrine Prostate Cancer: The high heterogeneity and low percentage of neuroendocrine cells in prostate cancer limit the utility of traditional bulk RNA sequencing and even single-cell RNA sequencing to find better biomarkers for early diagnosis and stratification. Re-clustering of specific cell-type holds great promise for identification of intra-cell-type heterogeneity. We re-clustered neuroendocrine cells and identified 3 states. State 1 and state 3 with distinct high neuroendocrine scores and marker genes enriched in N-Myc and REST target genes, respectively. Our data highlight the central role of N-Myc and REST in mediating lineage plasticity and classifying neuroendocrine phenotypes.

Emerging evidence showed that microenvironment shaped by pro- and anti-inflammatory types of macrophages contribute to not only host defense, but also cancer progression. We found that cancer stem cells (CSCs), without affect macrophage phenotype, induce M1 macrophages producing NED-related cytokines. Integrating transcriptome profiling in combine with mass spectrometry metabolites analysis reveals the contribution of glycolysis pathway in NED-related cytokines production. Importantly, CSC-educated M1 macrophages induced NED of cancer cells, thereby shifting carcinoma reprograming toward a neuroendocrine (NE) fate. In tumor tissues, NE marker CgA expression is associated with M1, but not M2, marker. These findings offer therapeutic opportunities of using immunotherapy to prevent the induction of a more malignant cancer phenotype.

5. Epigenetic modulating the muscle-to-neuronal axis during aging

Loss of muscle mass and strength, known as sarcopenia, is a leading cause of frailty in the elderly and the major contributor to declining quality of life and increasing medical care expenses. However, the connection between muscle mass loss and neurodegeneration remains largely unknown. Extracellular vesicles (EVs), such as exosomes, are small particles released by cells that mediate communication between cells by transferring cargo to recipient cells. Our study demonstrates that exosomes derived from muscle cells undergoing atrophy can be released into the bloodstream and can transfer microRNAs to neuronal cells. As a result, these transferred microRNAs target both coding and long noncoding RNAs in the neuronal cells, leading to their dysfunction.


Publications

Virus-related work

  1. W.S. Yang, D. Kim, S. Kang, C.J. Lai, I. Cha, P.C. Chang, J.U. Jung “Development of KSHV vaccine platforms and chimeric MHV68-K-K8.1 glycoprotein for evaluating the in vivo immunogenicity and efficacy of KSHV vaccine candidates” mBio 2024; e0291324.
  2. W.W. Yeh, Y.Q. Chen, W.S. Yang, Y.C. Hong, S. Kao, T.T. Liu, T.W. Chen, L. Chang, P.C. Chang* “SUMO modification of histone demethylase KDM4A in Kaposi’s sarcoma-associated herpesvirus-induced primary effusion lymphoma” Journal of Virology 2022; 96(16):e0075522.
  3. W.S. Yang, W.W. Yeh, M. Campbell, L. Chang, P.C. Chang* “Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation” PLoS Pathogens 2021; 17(6):e1009670.
  4. M. Campbell, W.S. Yang, W.W. Yeh, C.H. Kao, P.C. Chang* “Epigenetic Regulation of Kaposi’s sarcoma-associated herpesvirus Latency” Frontiers in Microbiology 2020; 19(11):850.
  5. Y.W. Liang, M.L. Wang, C.H. Chien, Y.P. Yang, A.A. Yarmishyn, W.Y. Lai, Y.H. Luo, Y.T. Lin, P.C. Chang*, S.H. Chiou* “Highlight of Immune Pathogenic Response and Hematopathologic Effect in SARS-CoV, MERS-CoV, and SARS-Cov-2 Infection” Frontiers in Immunology 2020; 12(11):1022.
  6. W.S. Yang, T.Y. Lin, L. Chang, W.W. Yeh, S.C. Huang, T.Y. Chen, Y.T. Hsieh, S.T. Chen, W.C. Li, C.C. Pan, M. Campbell, C.H. Yen, Y.A. Chen, P.C. Chang* “HIV-1 Tat Interacts with a Kaposi’s Sarcoma-Associated Herpesvirus Reactivation-Upregulated Antiangiogenic Long Noncoding RNA, LINC00313, and Antagonizes Its Function” Journal of Virology 2020; 94(3):e01280-19.
  7. C.J. Lin, L. Chang, H.W. Chu, H.J. Lin, P.C. Chang, R.Y.L. Wang, B. Unnikrishnan, J.Y. Mao, S.Y. Chen, C.C. Huang “High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots” Small 2019; 15(41):e1902641.
  8. W.S. Yang, M. Campbell, H.J. Kung, P.C. Chang* “In vitro SUMOylation Assay to Study SUMO E3 Ligase Activity” JoVE-Journal of Visualized Experiments 2018; 131(e56629):1-6.
  9. W.S. Yang, M. Campbell, P.C. Chang* ”SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication.” PLoS Pathogens 2017; 13(2):e1006216.
  10. P.C. Chang*, M. Campbell, E.S. Robertson “Human Oncogenic Herpesvirus and Post-translational Modifications – Phosphorylation and SUMOylation” Frontiers in Microbiology 2016; 7:962.
  11. W.S. Yang, H.W. Hsu, M. Campbell, C.Y. Cheng, P.C. Chang* “K-bZIP mediated SUMO-2/3 specific modification on the KSHV genome negatively regulates lytic gene expression and viral reactivation” PLoS Pathogens 2015; 11(7): e1005051.
  12. P.C. Chang* and H.J. Kung “SUMO and KSHV Replication” Cancers 2014; 6(4):1905-1924.
  13. M. Campbell, K.Y. Kim, P.C. Chang, S. Huerta, B. Shevchenko, D.H. Wang, C. Izumiya, H.J. Kung, Y. Izumiya “A Lytic Viral Long Non-coding RNA Modulates the Function of a Latent Protein” Journal of Virology 2014; 88(3):1843~1848.
  14. C.Y. Cheng, C.H. Chu, H.W. Hsu, F.R. Hsu, C.Y. Tang, W.C. Wang, H.J. Kung, P.C. Chang* “An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example” BMC genomics 2014; 15:S1.
  15. P.C. Chang*, C.Y. Cheng, M. Campbell, Y.C. Yang, H.W. Hsu, T.Y. Chang, C.H. Chu, Y.W. Lee, C.L. Hung, S.M. Lai, C.G. Tepper, W.P. Hsieh, H.W. Wang, C.Y. Tang, W.C. Wang, H.J. Kung “The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi’s sarcoma associated herpesvirus reactivation.” BMC Genomics 2013; 14(1):824.
  16. M. Campbell, P.C. Chang, S. Huerta, C. Izumiya, R. Davis, C.G. Tepper, K.Y. Kim, B. Shevchenko, D.H. Wang, J.U. Jung, P.A. Luciw, H.J. Kung, Y. Izumiya “Protein Arginine Methyltransferase 1-directed Methylation of Kaposi Sarcoma-associated Herpesvirus Latency-associated Nuclear Antigen” Journal of Biological Chemistry 2012; 287(8):5806–5818.
  17. P.C. Chang*, Y. Izumiya, C.Y. Wu, L.D. Fitzgerald, M. Campbell, T.J. Ellison, K.S. Lam, P.A. Luciw, H.J. Kung “Histone demethylase JMJD2A regulates Kaposi’s sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor” Journal of Virology 2011; 85(7):3283-3293.
  18. P.C. Chang*, L.D. Fitzgerald, D.A. Hsia, Y. Izumiya, C.Y. Wu, W.P. Hsieh, S.F. Lin, M. Campbell, K.S. Lam, P.A. Luciw, C.G. Tepper, H.J. “Kaposi’s sarcoma associated herpesvirus (KSHV) encodes a SUMO E3 ligase which is SIM-dependent and SUMO-2/3-specific” Journal of Biological Chemistry 2010; 285(8):5266-5273.
  19. P.C. Chang*, L.D. Fitzgerald, A. Van Geelen, Y. Izumiya, T.J. Ellison, D.H. Wang, D.K. Ann, P.A. Luciw, H.J. Kung “KRAB domain-associated protein-1 as a latency regulator for Kaposi’s sarcoma-associated herpesvirus and its modulation by the viral protein kinase” Cancer Research 2009; 69(14):5681-5689.
  20. Y.L. Lin, P.C. Chang, Y. Wang, and M. Li “Identification of novel viral interleukin-10 isoforms of human cytomegalovirus AD169” Virus Research 2008; 131(2):213-223.
  21. P. C. Chang* and M. Li “Kaposi’s sarcoma-associated herpesvirus K-cyclin interacts with Cdk9 and stimulates Cdk9-mediated phosphorylation of p53 tumor suppressor” Journal of Virology 2008; 82(1):278-290.
  22. P. C. Chang*, C.W. Chi, G.Y. Chau, F.Y. Li, Y.H. Tsai, J.C. Wu and Y.H.W. Lee “DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus associated hepatocellular carcinoma and is involved in cell growth control” Oncogene 2006; 25(14):1991-200.

Cancer-related work

  1. P.A. Chen, P. C. Chang*, W.W. Yeh, T.Y. Hu, Y.C. Hong, Y.C. Wang, W.J. Huang, T.P. Lin “The lncRNA TPT1-AS1 promotes the survival of neuroendocrine prostate cancer cells by facilitating autophagy” American Journal of Cancer Research 2024 May 15;14(5):2103-2123.
  2. Y.C. Hong, T.Y. Hu, C.S. Hsu, W.W. Yeh, W.Z. Wong, T.W. Shen, C.H. Chang, K. Hua, C.Y. Tung, Y.C. Peng, C.C., W.J. Huang, P.C. Chang, T.P. Lin* “Single-cell analysis of castration-resistant prostate cancers to identify potential biomarkers for diagnosis and prognosis of neuroendocrine prostate cancer” American Journal of Cancer Research 2023;13(10):4560-4578.
  3. C.H. Chang, T.Y. Cheng, W.W. Yeh, Y.L. Luo, M. Campbell, T.C. Kuo, T.W. Shen, Y.C. Hong, C.H. Tsai, Y.C. Peng, C.C. Pan, M.H. Yang, J.C. Shih, H.J. Kung, W.J. Huang, P.C. Chang*, T.P. Lin* “REST-repressed lncRNA LINO01801 induces neuroendocrine differentiation in prostate cancer via transcriptional activation of autophagy” American Journal of Cancer Research 2023 Sep 15;13(9):3983-4002.
  4. Y.T. Chang, T.P. Lin, J.T. Tang, M. Campbell, Y.L. Luo, S.Y. Lu, C.P. Yang, T.Y. Cheng, C.H. Chang, T.T. Liu, C.H. Lin, H.J. Kung, C.C. Pan, P.C. Chang* “HOTAIR is a REST-regulated LncRNA that Promotes Neuroendocrine Differentiation in Castration Resistant Prostate Cancer” Cancer Letters 2018; 433:43-52.
  5. 4. Y.C. Lin, Y.T. Chang, M. Campbell, H.C. Lee, J. C. Shih, P.C. Chang* “MAOA- a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells” Scientific Reports 2017; 7:46338.
  6. Y.T. Chang, T.P Lin, M. Campbell, C.C. Pan, S.H. Lee, H.C. Lee, M.H. Yang, H.J. Kung, P.C. Chang* “REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer” Scientific Reports 2017; 3(7):42795.
  7. T.P. Lin, Y.T. Chang, S.Y. Lee, M. Campbell, T.C. Wang, S.H. Shen, H.J. Chung, Y.H. Chang, Allen W Chiu, C.C. Pan, C.H. Lin, C.Y. Chu, H.J. Kung, C.Y. Cheng, P.C. Chang*. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget 2016; 7:26137~26151.
  8. P.C. Chang*, T.Y. Wang, Y.T. Chang, C.Y. Chu, C.L. Lee, H.W. Hsu, T.A. Zhou, Z. Wu, R.H. Kim, S.J. Desai, S. Liu, H.J. Kung “Autophagy Pathway Is Required for IL-6 Induced Neuroendocrine Differentiation and Chemoresistance of Prostate Cancer LNCaP Cells” PLoS ONE 2014; 9:e88556.
  9. Z. Wu, P.C. Chang, J.C. Yang, C.Y. Chu, L.Y. Wang, N.T. Chen, A.H. Ma, S.J. Desai, S.H. Lo, C.P. Evans, K.S. Lam, and H.J. Kung “Autophagy Blockade Sensitizes Prostate Cancer Cells towards Src Family Kinase Inhibitors” Genes & Cancer 2010; 1(1):40-49.

Others

  1. Y.P. Tsao, F.Y. Tseng, C.W. Chao, M.H. Chen, Y.C. Yeh, B.O. Abdulkareem, S.Y. Chen, W.T. Chuang, P.C. Chang, I.C. Chen, P.H. Wang, C.S. Wu, C.Y. Tsai, S.T. Chen “NLRP12 is an innate immune checkpoint for repressing IFN signatures and attenuating lupus nephritis progression” Journal of Clinical Investigation 2023;133(3):e157272.
  2. Y.T. Hsieh, T.L. Tsai, S.Y. Huang, J.W. Heng, Y.C. Huang, P.Y. Tsai, C.C. Tu, T.L. Chao, Y.M. Tsai, P.C. Chang, C.K. Lee, G.Y. Yu, S.Y. Chang, I.L. Dzhagalov, C.L. Hsu. “IFN-stimulated metabolite transporter ENT3 facilitates viral genome release” EMBO Reports 2023; e55286.
  3. W.C. Tsai, W.H. Chiang, C.H. Wu, Y.C. Li, M. Campbell, P.H. Huang, M.W. Lin, C.H. Lin, S.M. Cheng, P.C. Chang*, C.C. Cheng* “miR-548aq-3p is a novel target of Far infrared radiation which predicts coronary artery disease endothelial colony forming cell responsiveness” Scientific Reports 2020; 10(1):6805.
  4. C.P. Yang, W.S. Yang, Y.H. Wong, K.H. Wang, Y.C. Teng, M.H. Chang, K.H. Liao, F.S. Nian, C.C. Chao, JW Tsai, W.L. Hwang, M.W. Lin, T.Y. Tzeng, P.N. Wang, M. Campbell, L.K. Chen, T.F. Tsai*, P.C. Chang*, H.J. Kung* “Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs” Aging Cell 2020; 19(5):e13107.
  5. R. Kant, C.H. Yen, J.H. Hung, C.K. Lu, C.Y. Tung, P.C. Chang, Y.H. Chen, Y.C. Tyan, Y.A. Chen “Induction of GNMT by 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranoside through proteasome-independent MYC downregulation in hepatocellular carcinoma” Scientific Reports 2019; 9(1):1968.
  6. Y.H. Liu, J.W. Tsai, J.L. Chen, W.S. Yang, P.C. Chang, P.L. Cheng, D.L. Turner, Y. Yanagawa, T.W. Wang, J.Y. Yu “Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon.” Scientific Reports 2017; 7(42895):1.
  7. W.F. Chiou, P.C. Chang, C.I. Chou, C.F. Chen “Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps Sinensis ” Life Sciences 2000; 66(14):1369-1376.

現在成員

  • 碩士生: 鄭裕弘、游凱婷、簡沛芹、洪詠智
  • 大學部: 簡甫仁
  • 碩士及助理: 陳柏安、胡則勻 (2022畢業生)

歷屆博士畢業生

2014/09張怡婷

  • 1.C. Chang, T.Y. Wang, Y.T. Chang, C.Y. Chu, C.L. Lee, H.W. Hsu, T.A. Zhou, Z. Wu, R.H. Kim, S.J. Desai, S. Liu, H.J. Kung “Autophagy Pathway Is Required for IL-6 Induced Neuroendocrine Differentiation and Chemoresistance of Prostate Cancer LNCaP Cells” PLoS ONE 2014; 9:e88556 (SCI). (Impact factor: 2.74;Rank: 37.32%)
  • 2.P. Lin, Y.T. Chang, S.Y. Lee, M. Campbell, T.C. Wang, S.H. Shen, H.J. Chung, Y.H. Chang, Allen W Chiu, C.C. Pan, C.H. Lin, C.Y. Chu, H.J. Kung, C.Y. Cheng, P.C. Chang. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget 2016; 7:26137~26151 (SCI).
  • 3.T. Chang, T.P Lin, M. Campbell, C.C. Pan, S.H. Lee, H.C. Lee, M.H. Yang, H.J. Kung, P.C. Chang “REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer” Scientific Reports 2017; 3(7):42795 (SCI). (Impact factor: 3.998;Rank: 23.24%) [第一作者]
  • 4.C. Lin, Y.T. Chang, M. Campbell, H.C. Lee, J. C. Shih, P.C. Chang “MAOA- a novel decision maker of apoptosis and autophagy in hormone refractory neuroendocrine prostate cancer cells” Scientific Reports 2017; 7:46338 (SCI). (Impact factor: 3.998;Rank: 23.24%) [第一作者]
  • 5.T. Chang, T.P. Lin, J.T. Tang, M. Campbell, Y.L. Luo, S.Y. Lu, C.P. Yang, T.Y. Cheng, C.H. Chang, T.T. Liu, C.H. Lin, H.J. Kung, C.C. Pan, P.C. Chang “HOTAIR is a REST-regulated LncRNA that Promotes Neuroendocrine Differentiation in Castration Resistant Prostate Cancer” Cancer Letters 2018; 433:43-52 (SCI). (Impact factor: 7.36;Rank: 12.09%) [第一作者]

2015/09 楊宛珊 (現職: Lerner Research Institute, Cleveland Clinic 博士後研究員)

  • 1. S. Yang, W.W. Yeh, M. Campbell, L. Chang, P.C. Chang “Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation” PLoS Pathogens 2021; 17((6)):e1009670 (SCI). (Impact factor: 6.218; Rank: 6.76%) [第一作者]
  • 2. Campbell, W.S. Yang, W.W. Yeh, C.H. Kao, P.C. Chang “Epigenetic Regulation of Kaposi’s sarcoma-associated herpesvirus Latency” Frontiers in Microbiology 2020; 19(11):850 (SCI). (Impact factor: 5.640Rank: 24.63%)
  • 3. P. Yang, W.S. Yang, Y.H. Wong, K.H. Wang, Y.C. Teng, M.H. Chang, K.H. Liao, F.S. Nian, C.C. Chao, JW Tsai, W.L. Hwang, M.W. Lin, T.Y. Tzeng, P.N. Wang, M. Campbell, L.K. Chen, T.F. Tsai, P.C. Chang, H.J. Kung “Muscle atrophy-related myotube-derived exosomal microRNA in neuronal dysfunction: Targeting both coding and long noncoding RNAs Aging Cell 2020; 19((5)):e13107 (SCI). (Impact factor: 7.238;Rank: 4.90%) [第一作者]
  • 4. S. Yang, T.Y. Lin, L. Chang, W.W. Yeh, S.C. Huang, T.Y. Chen, Y.T. Hsieh, S.T. Chen, W.C. Li, C.C. Pan, M. Campbell, C.H. Yen, Y.A. Chen, P.C. Chang* “HIV-1 Tat Interacts with a Kaposi’s Sarcoma-Associated Herpesvirus Reactivation-Upregulated Antiangiogenic Long Noncoding RNA, LINC00313, and Antagonizes Its Function” Journal of Virology 2020; 94(3):e01280-19 (SCI). (Impact factor: 4.501;Rank: 20.27%) [第一作者]
  • 5. S. Yang, M. Campbell, H.J. Kung, P.C. Chang “In vitro SUMOylation Assay to Study SUMO E3 Ligase Activity” JoVE-Journal of Visualized Experiments 2018; 131(e56629):1-6 (SCI). (Impact factor: 1.163;Rank: 62.68%) [第一作者]
  • 6. H. Liu, J.W. Tsai, J.L. Chen, W.S. Yang, P.C. Chang, P.L. Cheng, D.L. Turner, Y. Yanagawa, T.W. Wang, J.Y. Yu “Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon.” Scientific Reports 2017; 7(42895):1 (SCI). (Impact factor: 3.998;Rank: 23.24%)
  • 7. S. Yang, H.W. Hsu, M. Campbell, C.Y. Cheng, P.C. Chang “K-bZIP mediated SUMO-2/3 specific modification on the KSHV genome negatively regulates lytic gene expression and viral reactivation” PLoS Pathogens 2015; 11(7): (SCI). (Impact factor: 6.218;Rank: 6.76%) [第一作者]

2016/09 張龍

  1. J. Lin, L. Chang, H.W. Chu, H.J. Lin, P.C. Chang, R.Y.L. Wang, B. Unnikrishnan, J.Y. Mao, S.Y. Chen, C.C. Huang “High Amplification of the Antiviral Activity of Curcumin through Transformation into Carbon Quantum Dots” Small 2019; 15(41):e1902641 (SCI). (Impact factor: 11.459;Rank: 6.13%) [第一作者]

2023/  張景欣

  • 1.C.H. Chang, T.Y. Cheng, W.W. Yeh, Y.L. Luo, M. Campbell, T.C. Kuo, T.W. Shen, Y.C. Hong, C.H. Tsai, Y.C. Peng, C.C. Pan, M.H. Yang, J.C. Shih, H.J. Kung, W.J. Huang, P.C. Chang*, T.P. Lin* “REST-repressed lncRNA LINO01801 induces neuroendocrine differentiation in prostate cancer via transcriptional activation of autophagy” American Journal of Cancer Research (2023 Sep 15;13(9):3983-4002) (Impact factor:5.3; Rank by JCI: 97/317) [第一作者]

歷屆碩士畢業

  • 2011/09 張怡婷 (論文發表: PLoS One. 2014 Feb 14; 9(2):e88556)
  • 2011/09 楊奕程 (論文發表: BMC Genomics. 2013 Nov 23; 14:824)
  • 2013/09 楊宛珊 (論文發表: PLoS Pathog. 2015 Jul 21; 11(7):e1005051)
  • 2013/09 李松遠 (論文發表: Oncotarget. 2016 May 3; 7(18):26137)
  • 2015/09 羅勻里
  • 2015/09 黃詩晴 (論文發表: J Virol. 2020 Jan 17;94(3) pii: e01280-19)
  • 2016/09 楊佳蓓 (論文發表: Aging cell. 2020 Mar 31:e13107 )
  • 2016/09 李悅誠
  • 2017/09 林庭宇 (論文發表: J Virol. 2020 Jan 17;94(3) pii: e01280-19)
  • 2017/09 江玟慧 (論文發表: Sci Rep. 2020 Apr 22;10(1):6805)
  • 2017/09 鄭庭伃 (論文發表: Am J Cancer Res. 2023 Sep 15;13(9):3983-4002)
  • 2017/09 葉葳 (論文發表: J Virol 2022; 96(16):e0075522.)
  • 2017/09 施文仁
  • 2018/09 高晨媗
  • 2019/09 沈彩文
  • 2020/09 胡則勻 (論文發表: Am J Cancer Res. 2023 Nov;13(10):4560-45782)
  • 2020/09 陳柏安

歷屆博士畢業生

  • 張怡婷  (2014/09 ~ 2018/09)   
    • 3rd author 發表: PLoS ONE 2014.
    • 2nd author 發表: Oncotarget 2016.
    • 1st author 發表: Scientific Reports 2017.
    • 1st author 發表: Scientific Reports 2017.
    • 1st author 發表: Cancer Letters 2018.
  • 楊宛珊 (2015/09 ~ 2020/07): 目前在 Cleveland Clinic
    • 1st author 發表: PLoS Pathogen 2015.
    • 1st author 發表: PLoS Pathogen 2017.
    • 1st author 發表: JoVE. 2018.
    • 1st author 發表: Journal of Virology 2020.
    • 2nd author 發表: Frontiers in Microbiology 2020.
    • 1st author 發表: Aging Cell 2020.
    • 1st author 發表: PLoS Pathogen 2021.
    • 3rd author 發表: Journal of Virology 2023.
    • 1st author 發表: mBio 2024.
  • 張景欣 (2015/09 ~ 2024/06)
    • 7th author 發表: American Journal of Cancer Research 2023.
    • 1st author 發表: American Journal of Cancer Research 2023.
    • 9th author 發表: Cancer Letters 2018.
  • 張龍 (2016/09 ~ 2020/02)   
    • 1st author發表: Small. 2019 Oct; 15(41): e190264
  • 葉葳 (2020/09 ~ 2022/07): 目前在 USC (美國南加大)
    • 1st author 發表: Journal of Virology 2022.
    • 2nd author 發表: PLoS Pathogen 2021.
    • 3rd author 發表: Frontiers in Microbiology 2020.
    • 4th author 發表: Journal of Virology 2020.
    • 3rd author  發表: American Journal of Cancer Research 2023.
    • 4th author  發表: American Journal of Cancer Research 2023.
    • 3rd author  發表: American Journal of Cancer Research 2024.